Best L^{1}-Approximation by Polynomials, II

H. Fiedler and W. B. Jurkat
Abteilung für Mathematik der Universität Uim, D-7900 Ulm, Federal Republic of Germany
Communicated by V. Totik

Received September 22, 1986; revised February 12, 1987

1. Introduction

Let P_{n} denote the set of all real polynomials of degree not exceeding n and put (for any continuous $f:[-1,1] \rightarrow \mathbb{R}$)

$$
E_{n}(f)=\inf _{p \in P_{n}} \int_{-1}^{1}|f(t)-p(t)| d t, \quad n=0,1,2, \ldots
$$

f is said to be in the Markoff class M_{n}, provided that $\left(f-p_{f}\right) U_{n}$ does not change sign on $[-1,1]$, where $U_{n}(t)$ denotes the nth Chebyshev polynomial of the second kind and p_{f} denotes the interpolation polynomial of f with respect to the zeros of U_{n}.

It is well known ([2, p. 94] or [4, p. 274, Theorem 2]) that

$$
E_{n-1}(f)=\left|\int_{-1}^{1} f(t) \operatorname{sgn} U_{n}(t) d t\right| \quad \text { for any } \quad f \in M_{n}(n \geqslant 1)
$$

H. Brass [3] points out that

$$
\begin{equation*}
\int_{-1}^{1} f(t) \operatorname{sgn} U_{n}(t) d t=2 \cdot \sum_{k=0}^{\infty} \frac{b_{(2 k+1)(n+1)-1}}{2 k+1} \tag{1.1}
\end{equation*}
$$

provided that the expansion

$$
f \sim \sum_{k=0}^{\infty} b_{k} U_{k}
$$

is known. He remarks further that in many known examples the coefficients b_{k} tend rapidly to zero and that in these cases $2\left|b_{n}\right|=2\left|b_{n}(f)\right|$ yields an asymptotic expansion of $E_{n-1}(f)$ (all of his examples lie in the Markoffclass M_{n}).

We derive in this paper upper and lower estimates for $E_{n-1}(f)-2 b_{n}$ which are applicable even if f does not lie in the Markoff class M_{n}, such as

$$
f(t)=\cos (\omega t) \quad \text { with } \quad|\omega|>\pi / 2
$$

2. Notations and Lower Estimates

We have

$$
\begin{equation*}
2 b_{n}(f)=(4 / \pi) \cdot \int_{-1}^{1} f(t) U_{n}(t)\left(1-t^{2}\right)^{1 / 2} d t \tag{2.1}
\end{equation*}
$$

If f is an n-fold integral of a real integrable function then $[4$, p. 270, formula (1.2)]

$$
\begin{equation*}
\int_{-1}^{1} f(t) \operatorname{sgn} U_{n}(t) d t=\int_{-1}^{1} V_{n}(t) f^{(n)}(t) d t \tag{2.2}
\end{equation*}
$$

where the kernel $V_{n}(t)$ is given in [4, p. 276, Theorem 4]. From [4, p. 279, Theorem 5 and p. 270, formula (1.5)] we have

$$
\begin{equation*}
\left|V_{n}(t)\right| \leqslant 2^{3-n}\left(1-t^{2}\right)^{n} n^{1 / 2} / n! \tag{2.3}
\end{equation*}
$$

for natural n and $-1 \leqslant t \leqslant 1$.
$\operatorname{Proposition}\left(n \in \mathbb{N}, f \in L^{1}[-1,1], b_{j}=b_{j}(f)\right.$).

$$
\begin{equation*}
2\left|\sum_{k=1}^{\infty} \frac{b_{(2 k+1)(n+1)-1}}{2 k+1}\right| \leqslant 3 E_{3 n+1}(f) . \tag{2.4}
\end{equation*}
$$

Proof. Define the c_{j} by

$$
E_{3 n+1}(f)=\left\|f-\sum_{k=0}^{3 n+1} c_{k} U_{k}\right\|_{i} .
$$

From (1.1) we obtain

$$
\begin{aligned}
E_{3 n+1}(f) & \geqslant\left|\int_{-1}^{1}\left(f-\sum_{k=0}^{3 n+1} c_{k} U_{k}\right) \operatorname{sgn} U_{n} d t\right| \\
& =\left|2\left(b_{n}-c_{n}\right)+2 \sum_{k=1}^{\infty} \frac{b_{(2 k+1)(n+1)-1}}{2 k+1}\right|
\end{aligned}
$$

The proposition follows since (observe (2.1) and $\left.\left|U_{n}(t)\left(1-t^{2}\right)^{1 / 2}\right| \leqslant 1\right)$

$$
\begin{aligned}
2\left|b_{n}-c_{n}\right| & =(4 / \pi)\left|\int_{-1}^{1}\left(f(t)-\sum_{k=0}^{3 n+1} c_{k} U_{k}(t)\right) U_{n}(t)\left(1-t^{2}\right)^{1 / 2} d t\right| \\
& \leqslant(4 / \pi)\left\|f-\sum_{k=0}^{3 n+1} c_{k} U_{k}\right\|_{1}=(4 / \pi) E_{3 n+1}(f)
\end{aligned}
$$

Our proposition yields immediately the following general lower estimate:

Corollary $\left(n \in \mathbb{N}, f \in L^{1}[-1,1]\right)$.

$$
E_{n-1}(f) \geqslant 2\left|\sum_{k=0}^{\infty} \frac{b_{(2 k+1)(n+1)-1}}{2 k+1}\right| \geqslant 2\left|b_{n}\right|-3 E_{3 n+1}(f) .
$$

Proof. The first inequality is an immediate consequence of $[4$, p. 274, Theorem 2a] and of (1.1) and the second inequality follows from the proposition.

Remark. The lower estimate as given in the corollary is in general better than the trivial estimate (let $p \in P_{n}$ yield the best approximation)

$$
\begin{aligned}
E_{n-1}(f) & =\int_{-1}^{1}|f(t)-p(t)| d t \\
& \geqslant\left|\int_{-1}^{1}\{f(t)-p(t)\} U_{n}(t)\left(1-t^{2}\right)^{1 / 2} d t\right| \\
& =\left|\int_{-1}^{1} f(t) U_{n}(t)\left(1-t^{2}\right)^{1 / 2} d t\right|=(\pi / 2)\left|b_{n}(f)\right| .
\end{aligned}
$$

Here we used (2.1) and the fact that $U_{n}(t)\left(1-t^{2}\right)^{1 / 2}$ is orthogonal to P_{n-1}.
If $b_{m} \geqslant 0$ for $m \geqslant n$ then the corollary implies $E_{n-1}(f) \geqslant 2 b_{n}(f)$ without any error term. This is the case, e.g., if $f(t)=\sum_{k=0}^{\infty} a_{k} t^{k}$ on $[-1,1]$ with $a_{k} \geqslant 0$ for $k \geqslant n$, since always $b_{m}\left(t^{k}\right) \geqslant 0$ (see $[5, \mathrm{p} .100]$).

3. The Main Result

One knows that f belongs to the Markoff class M_{n}, provided that $f^{(n)} \geqslant 0$ on $[-1,1]$, and then (1.1) is applicable for handling $E_{n-1}(f)$. If $f^{(n)} \geqslant 0$ holds true only in a neighbourhood of 0 , then f will lie outside M_{n} in general. Nevertheless we have the following result.

Theorem $\left(n \in \mathbb{N} ; f \in C^{n}[-1,1] ; f^{(n)}(x) \geqslant 0\right.$ for $\left.|x| \leqslant \delta \leqslant 1\right)$.

$$
\begin{aligned}
\left|E_{n-1}(f)-2 b_{n}(f)\right| \leqslant & \frac{2^{4-n} n^{1 / 2}}{n!} \cdot \int_{\delta \leqslant|t| \leqslant 1}\left(1-t^{2}\right)^{n}\left|f^{(n)}(t)\right| d t \\
& +2\left|\sum_{k=1}^{\infty} \frac{b_{(2 k+1)(n+1)-1}}{2 k+1}\right|
\end{aligned}
$$

Proof. We use [4, p. 274, Theorem 2d] and get

$$
\begin{align*}
E_{n-1}(f) & \leqslant \int_{-1}^{1} V_{n}(t)\left|f^{(n)}(t)\right| d t \\
& \leqslant 2 \int_{\delta \leqslant|t| \leqslant 1} V_{n}(t)\left|f^{(n)}(t)\right| d t+\int_{-1}^{1} V_{n}(t) f^{(n)}(t) d t \\
& =\mathrm{I}+\mathrm{II} . \tag{3.1}
\end{align*}
$$

Now (2.2) and (1.1) yield

$$
\mathrm{II}=2 \cdot \sum_{k=0}^{\infty} \frac{b_{(2 k+1)(n+1)-1}}{2 k+1}
$$

Thus the theorem follows from (2.3).
If we use our proposition (2.4) we obtain

Corollary $1\left(n \in \mathbb{N} ; f \in C^{n}[-1,1] ; f^{(n)}(x) \geqslant 0\right.$ for $\left.|x| \leqslant \delta \leqslant 1\right)$.

$$
\begin{aligned}
& \left|E_{n-1}(f)-2 b_{n}(f)\right| \\
& \quad \leqslant \frac{2^{4-n} n^{1 / 2}}{n!} \int_{\delta \leqslant|t| \leqslant 1}\left(1-t^{2}\right)^{n}\left|f^{(n)}(t)\right| d t+3 E_{3 n+1}(f) .
\end{aligned}
$$

Applying (3.1) and (2.3) we get
Corollary $2\left(n \in \mathbb{N} ; f \in C^{3 n+2}[-1,1] ; f^{(n)}(x) \geqslant 0\right.$ for $\left.|x| \leqslant \delta \leqslant 1\right)$.

$$
\begin{aligned}
\left|E_{n-1}(f)-2 b_{n}(f)\right| \leqslant & \frac{2^{4-n} n^{1 / 2}}{n!} \int_{\delta \leqslant|t| \leqslant 1}\left(1-t^{2}\right)^{n}\left|f^{(n)}(t)\right| d t \\
& +\frac{2^{4-3 n} n^{1 / 2}}{(3 n+2)!} \int_{-1}^{1}\left(1-t^{2}\right)^{3 n+2}\left|f^{(3 n+2)}(t)\right| d t
\end{aligned}
$$

4. Applications

Let $f(x)=(-1)^{n} \cos \omega x$. The case $|\omega| \leqslant \pi / 2$ was treated in [3]. Let $|\omega|>\pi / 2$ and put $\delta=(\pi / 2) /|\omega|$ and $q=1-\delta^{2}$. Corollary 1 implies that (replace n by $2 n ; n \in \mathbb{N}$)

$$
\left|E_{2 n-1}(f)-2 b_{2 n}(f)\right| \leqslant \frac{2^{6-2 n} n^{1 / 2}}{(2 n)!} q^{2 n} \omega^{2 n}+3 E_{6 n+1}(f)
$$

The right-hand side is exponentially smaller than $E_{2 n-1}(f)$, since [4, p. 290]

$$
E_{2 n-2}(f)=E_{2 n-1}(f)=\frac{2^{1-2 n} \omega^{2 n}}{(2 n)!}\left\{1+O_{\omega}(1 / n)\right\}
$$

It follows that

$$
\begin{equation*}
E_{2 n-2}(f)=E_{2 n-1}(f)=2 b_{2 n}(f) \cdot\left\{1+O_{\omega}\left(n^{1 / 2} q^{2 n}\right)\right\} \tag{4.1}
\end{equation*}
$$

Now use [5, p. 47] and the formula $2 b_{n}=a_{n}-a_{n+2}$ from [3] with

$$
a_{n}=\frac{2}{\pi} \int_{-1}^{1} f(x) T_{n}(x)\left(1-x^{2}\right)^{-1 / 2} d x
$$

to obtain

$$
2 b_{2 n}(f)=2\left\{J_{2 n}(\omega)-J_{2 n+2}(\omega)\right\}
$$

with [5, p. 48]

$$
J_{k}(\omega)=\frac{\omega^{k}}{2^{k}} \sum_{r=0}^{\infty} \frac{\left(-\omega^{2}\right)^{r}}{4^{r} r!(k+r)!}
$$

So, in the present case, $b_{2 n}$ is explicitly known and can easily be expanded into an asymptotic series. In other cases it might be useful to remember the formula (see [1, p. 785, \#22.11.4])

$$
2 b_{n}(f)=\int_{-1}^{1} V_{n}^{*}(t) f^{(n)}(t) d t
$$

where

$$
V_{n}^{*}(t)=\frac{2^{3 / 2}}{\pi} \frac{n+1}{n!} \gamma_{n}\left(\frac{1-t^{2}}{2}\right)^{n+1 / 2}
$$

and

$$
\gamma_{n}=\frac{\pi^{1 / 2} \Gamma(n+1)}{\Gamma(n+3 / 2)} \asymp n^{-1 / 2} .
$$

As another application of (1.1) we remark that the above theorem on the asymptotic behaviour of $E_{n-1}(f)$ is connected with [4, p. 286, Theorem 7b] and [4, p. 287, Theorem 8b]. In order to get asymptotic results from these theorems, one needs the quantities

$$
c_{n k}=\frac{2^{n-1}(n+2 k)!}{(2 k)!} \int_{-1}^{1} V_{n}(t) t^{2 k} d t \quad \text { for } \quad n \geqslant 1 \text { and } k \geqslant 0
$$

explicitly. Applying (2.2) to $f(t)=t^{n+2 k}$ and using (1.1) afterwards yields

$$
\begin{aligned}
c_{n k} & =2^{n-1} \int_{-1}^{1} t^{n+2 k} \operatorname{sgn} U_{n}(t) d t \\
& =2^{n} \cdot \sum_{r=0}^{\infty} \frac{b_{(2 r+1)(n+1)-1}(f)}{2 r+1} \\
& =\frac{(n+1)}{2^{2 k}} \sum_{r=0}^{[k /(n+1)]} \frac{1}{(r+1)(n+1)+k}\binom{n+2 k}{k-r(n+1)},
\end{aligned}
$$

where the last equation is a consequence of [5, p. 100]. In particular we have

$$
c_{n k}=\frac{(n+1)(n+2 k)!}{2^{2 k} k!(n+1+k)!} \quad \text { for } \quad 0 \leqslant k<n+1
$$

which was mentioned to us in a letter by H . Brass.

References

1. M. Abramowitz and I. A. Stegun (Eds.), "Handbook of Mathematical Functions," Dover, New York, 1965.
2. N. I. Achieser, "Vorlesungen über Approximationstheorie," Akademie-Verlag, Berlin, 1967.
3. H. Brass, A remark on best L^{1}-approximation by polynomials, J. Approx. Theory 52 (1988), 359-361.
4. H. Fiedler and W. B. Jurkat, Best L^{1}-approximation by polynomials, J. Approx. Theory 37 (1983), 269-292.
5. M. A. Snyder, "Chebyshev Methods in Numerical Approximation," Prentice-Hall, Englewood Cliffs, NJ, 1966.
